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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO PROBLEM SET 6
Solutions by J. Barber and T. Bunn

Reading:
105 Notes 7.1-7.8
Hand & Finch 4.1-4.6

1.
Show that the period of oscillation of a particle
of mass m in a potential U = A|x|n is given by

T =
2
n

√
2πm
E

(E
A

)1/n Γ
(

1
n

)
Γ
(

1
2 + 1

n

)
Take n = 2, evaluate the gamma functions, and
thus show that T reduces to the normal expres-
sion for a parabolic potential.
Solution:
E = 1

2mv
2 +A |x|n, so

v = ẋ =

√
2
m

(E −A |x|n)
1
2 .

We’ll just compute the time it takes the particle
to go from x = 0 to x = xmax ≡ (E/A)1/n. This
time is one fourth of the total period T . Since
x is positive over this interval, we can drop the
absolute value signs.

1
4T =

∫
dt =

∫ xmax

0

dt

dx
dx

=
√
m

2

∫ xmax

0

dx√
E −Axn

Substitute y = Axn/E, and you get

T =
2
n

√
2m
E

(
E

A

)1/n ∫ 1

0

y
1
n−1 dy√
1 − y

This integral is a beta function, which has the
following properties:

B(p, q) ≡
∫ 1

0

tp−1(1 − t)q−1dt =
Γ(p)Γ(q)
Γ(p+ q)

In our case, p = 1
n and q = 1

2 . Γ(1
2 ) =

√
π, so

T =
2
n

√
2πm
E

(
E

A

)1/n Γ( 1
n )

Γ( 1
2 + 1

n )
.

2.
Use a Green function to obtain the response of
an underdamped linear oscillator

ẍ+ γẋ+ ω2
0x = F (t)

to a driving (acceleration) function of the form

F (t) = 0 (t < 0)

= F0e
−βt (t > 0) ,

where γ, ω0, F0, and β are constants.
Solution:
The Green’s function for an underdamped oscil-
lator is

G(t) =
1
ωγ

e−γt/2 sinωγt.

So Green’s method gives

x(t) =
∫ t

−∞
F (t′)G(t− t′) dt′

=
F0

ωγ

∫ t

0

e−γ(t−t′)/2 sinωγ(t− t′)e−βt′ dt′

=
F0e

−βt

ωγ

∫ t

0

e(β−γ/2)u sinωγu du (u ≡ t− t′)

=
F0

ωγ

(
(β − γ/2)2 + ω2

γ

)
×

[
e−γt/2 ((β − γ/2) sinωγt− ωγ cosωγt)

+ ωγe
−βt

]
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3.
Consider a nonlinear damped oscillator whose
motion is described by

d2x

dt2
+ λ

dx

dt

∣∣∣dx
dt

∣∣∣ + ω2
0x = 0

The initial conditions are x(0) = a, ẋ(0) = 0.
Use the method of perturbations to find a solu-
tion that is accurate to first order in the small
quantity λ.
Solution:
We write the solution x(t) as a power series in
λ, and assume that, since λ is small, we can
drop all terms with two or more powers of λ.
Then, setting x(t) = x0(t)+λx1(t), our equation
of motion becomes

ẍ0 + λẍ1 + λx0 |x0| + ω2
0x0 + λω2

0x1 = 0

This equation must be true for all values of λ,
so we really have two equations:

ẍ0 + ω2
0x0 = 0 and ẍ1 + ω2

0x1 = −ẋ0 |ẋ0|
The first equation is just the simple harmonic
oscillator, and the solution which meets our ini-
tial conditions is x0(t) = a cosω0t. Substituting
that into the second equation, we find that the
equation for x1 looks like a driven oscillator with
a funny driving force:

ẍ1 + ω2
0x1 = a2ω2

0 sinω0t |sinω0t|
The easiest way to solve this equation is to solve
it first for the first half-period 0 < ω0t < π and
then for the second half-period. So during the
first time interval,

ẍ1 +ω2
0x1 = a2ω2

0 sin2 ω0t = 1
2a

2ω2
0(1−cos 2ω0t).

If we guess that the particular solution is of the
form x1p = A + B cos 2ω0t, we can solve for A
and B and get x1p(t) = 1

2a
2
(
1 + 1

3 cos 2ω0t
)
. We

need to add a homogeneous solution to match
the initial conditions x1(0) = 0 and ẋ1(0) = 0
(Remember: x0 contained the initial displace-
ment from the origin.) The homogeneous solu-
tion that does it is x1h(t) = − 2

3a
2 cosω0t, so the

total solution is

x1(t) =
1
2
a2

(
1 +

1
3

cos 2ω0t− 4
3

cosω0t

)
(for 0 < ω0t < π) .

For the second half-period, the driving force is
−a2ω2

0 sin2 ω0t, exactly the negative of what it
was before. So the particular solution x1p will
also be −1 times what it was before: x1p(t) =
− 1

2a
2
(
1 + 1

3 cos 2ω0t
)
. But this time the initial

conditions come from the fact that the position
and velocity must be continuous at t = π/ω0.
Specifically, from above equation for x1, we have

x1(π/ω0) = 4
3a

2 and ẋ1(π/ω0) = 0

The homogeneous solution that matches these
initial conditions is x1h = −2a2 cosω0t, so

x1(t) = −a2

(
1
2

+
1
6

cos 2ω0t+ 2 cosω0t

)
(for π < ω0t < 2π) .

In principle you’d need to repeat this process
for each half-period ad infinitum, but we can
see what’s going to happen: After one full cy-
cle the oscillator is again at rest, but it’s at
x(T ) = x0(T ) + λx1(T ) = a(1 − 8

3λa), rather
than at x(T ) = a, which is where it would be if
there were no damping. So it’ll just repeat the
same pattern as before, but with an amplitude
smaller than before by this factor.

4.
Two particles moving under the influence of their
mutual gravitational force describe circular or-
bits about one another with period τ . If they
are suddenly stopped in their orbits and allowed
to gravitate toward each other, show that they
will collide after a time τ/(4

√
2).

Solution:
It’s much easier to work with the equivalent one-
body problem, where r, the distance between
the particles, is regarded as the distance to some
fixed center of force, and the reduced mass µ
takes the place of the mass. Then if R is the
radius of the circular orbit, the period τ can be
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found by setting the gravitational force equal to
the centripetal force:

k

R2
=
µv2

R
=

4π2µR

τ2
.

So τ = 2π
√
µR3/k.

Now let’s find T , the time it takes the particles
to collide, starting from rest at a distance R. By
energy conservation, the speed at a distance r
from the origin satisfies 1

2µv
2 − k

r = − k
R , so

v = ṙ = −
√

2k
µ

(
1
r
− 1
R

)
,

where we take the negative root because r will
be decreasing. Now we can get T by integrating:

T =
∫ 0

R

dt

dr
dr =

√
µ

2k

∫ R

0

(
1
r
− 1
R

)− 1
2

dr

=
√

µ

2k

∫ R

0

r
1
2

(
1 − r

R

)− 1
2
dr

=

√
µR3

2k

∫ 1

0

u
1
2 (1 − u)−

1
2 du, where u =

r

R

Using the definition of the Beta function from
problem 1, with p = 3

2 and q = 1
2 , we find that

T =

√
µR3

2k
Γ( 3

2 )Γ( 1
2 )

Γ(2)

=
π

2

√
µR3

2k

=
τ

4
√

2

5.
A spacecraft in uniform circular orbit about the
sun, far from any planet, consists of a nose
cone and a service module. By means of ex-
plosive bolts, the nose cone separates from the
service module. The direction of motion of the
nose cone is unchanged, but its orbit becomes a
parabola instead of a circle. The service mod-
ule falls directly into the sun. Solve for the ratio
ρ = mcone/mspacecraft, where the spacecraft mass
is considered to be the sum of the nose cone and

service module masses.
Solution:
Let v0 be the initial velocity of the spacecraft
(before the separation). Remember that an ob-
ject in a parabolic orbit has twice as much kinetic
energy as an identical object in a circular orbit
at the same distance. (Why? Because an ob-
ject in a circular orbit has T = −1

2V , by the
virial theorem, and an object in a parabolic or-
bit has T = −V , since its total energy is zero.)
So during the separation, the nose cone picks up
a factor of two in kinetic energy, so its speed
goes up by a factor

√
2: vcone = v0

√
2. There-

fore, the change in momentum of the cone is
∆pcone = mcone∆vcone = mconev0(

√
2 − 1).

Now consider the service module. Its speed is
reduced to zero, so its change in momentum is
∆pmodule = −mmodulev0. The total change in
momentum is zero, so

mconev0(
√

2 − 1) = mmodulev0

mcone(
√

2 − 1) = mmodule

ρ =
mcone

mcone +mmodule
=

1√
2

6.
A particle moves under the influence of a central
force given by F (r) = −k/rn. If the particle’s
orbit is circular and passes through the force
center, show that n = 5.
Solution:
The equation in polar coordinates of a circle of
radius a passing through the origin is

r = 2a cos θ

The other two facts we’ll need are conserva-
tion of energy and angular momentum. Angular
momentum conservation gives

l = mr2θ̇, or θ̇ =
l

mr2

with l constant. We can use this to write ṙ in
terms of r. Differentiate and square the equation
for the circle, and substitute for θ̇:

ṙ2 = 4a2 sin2 θ θ̇2

= 4a2θ̇2(1 − cos2 θ) = θ̇2(4a2 − r2)

=
l2

m2r4
(4a2 − r2) .
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You’re probably wondering why we’re playing
these algebra games. Well, we wanted to
write the total energy of the particle without
any derivatives in it. Noting that the po-
tential energy corresponding to this force is
U(r) = − k

(n−1)rn−1 , we can now write:

E = 1
2mr

2θ̇2 + 1
2mṙ

2 − k

(n− 1)rn−1

=
l2

2mr2
+

l2

2mr4
(4a2 − r2) − k

(n− 1)rn−1

=
2l2a2

m

1
r4

− k

(n− 1)
1

rn−1

So the energy has two terms, one of which varies
as r−4 and the other of which varies as r−(n−1).
But E must be constant as r varies, so those two
terms must cancel each other. That can only
happen if their exponents are equal, so we must
have n = 5.

7.
A spacecraft in circular orbit about the sun fires
its thruster in order to change instantaneously
the direction of its velocity v by 45◦ (toward the
sun), keeping the same magnitude |v|. What is
the eccentricity of the spacecraft’s new orbit?
Solution:
We shall use the subscript “f” to indicate im-
mediately after the thruster fires, and “i” to
indicate immediately before. We are given that

)vf =
|)vi|√

2

(
−r̂ + θ̂

)
,

from which we see that lf = li√
2
, where l is the

angular momentum. Furthermore, |)vf | = |)vi|,
and r remains instantaneously unchanged dur-
ing the thrust, so Ef = Ei as well. But E = − k

2a
(Notes 7.12), which implies that af = ai. Using
the definition of a from Notes 7.10 yields

ai = af

l2i
µk (1 − ε2i )

=
l2f

µk (1 − ε2f )
l2i
µk

=
l2i /2

µk (1 − ε2f )
(since εi = 0)

1 − ε2f = 1
2

εf =
1√
2

8.
A puck of mass m is connected by a massless
string to a weight of the same mass. It moves
without friction on a horizontal table, in circular
orbit about the hole.

(a)
Calculate the frequency of small radial oscilla-
tions about the circular orbit.
Solution:
Let’s take as our generalized coordinates r and
θ, the polar coordinates of the puck with respect
to the hole. Then

T = Tpuck + Tweight

=
m

2

(
ṙ2 + r2θ̇2

)
+
m

2
ṙ2

= mṙ2 +
m

2
r2θ̇2

U = mgr + constant

and so the Lagrangian is:

L = mṙ2 +
m

2
r2θ̇2 −mgr

Since θ is cyclic, angular momentum is con-
served, and l = mr2θ̇. Applying the Euler-
Lagrange equation to the r coordinate yields

d

dt

(
∂L
∂ṙ

)
=
∂L
∂r

= mrθ̇2 −mg

2r̈ =
l2

m2r3
− g



5

In a circular orbit, r = R and r̈ = 0, which yields
l2 = m2R3g for a circular orbit. Now, suppose
we start out in a circular orbit of radius R, but
then perturb it by an amount x, where x << R,
i.e. r = R+ x. Using the value of l for a circular
orbit, the D.E. then becomes:

2ẍ = g

(
R3

(R+ x)3
− 1

)

ẍ =
g

2

(
1(

1 + x
R

)3 − 1

)

ẍ ≈ − 3g
2R

x (expand about x = 0)

ωperturbation =

√
3g
2R

(b)
Expressing this frequency as a ratio to the orbital
frequency, show that the orbit does not close.
Solution:
From the expression for angular momentum in a
circular orbit

l2 = m2R3g = m2v2R2

v =
√
Rg ,

and so the orbital frequency is

ωorbit =
2π
T

= 2π
v

2πR
=

√
g

R
.

ωperturbation

ωorbit
=

√
3
2

which is irrational, so the orbit does not close.


